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For the minimal multiplet of 5D N = 1 supergravity introduced by Howe in 1981, we give a

complete solution of the Bianchi identities. The geometry of curved superspace is shown to

allow the existence of a large family of off-shell supermultiplets that can be used to describe

supersymmetric matter, including vector multiplets and hypermultiplets. We formulate a

manifestly locally supersymmetric action principle. Its natural property turns out to be

the invariance under so-called projective transformations of the auxiliary isotwistor vari-

ables. We then demonstrate that the projective invariance allows one to uniquely restore

the action functional in a Wess-Zumino gauge. The latter action is well-suited for reducing

the supergravity-matter systems to components.
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1. Introduction

In our recent paper [1], the projective superspace formulation for matter-coupled simple

supergravity in five dimensions was presented. Building on the earlier work of [2], ref. [1]

provided the first solution to the important old problem of incorporating supergravity into

the projective superspace approach [3, 4]. The latter is known to be a powerful paradigm for

constructing off-shell rigid supersymmetric theories with eight supercharges inD ≤ 6 space-

time dimensions, and in particular for the explicit construction of hyperkähler metrics, see,

e.g., [5]. In [1], we introduced various supermultiplets to describe matter fields coupled to

supergravity, stated the locally supersymmetric action principle in the Wess-Zumino gauge,

and constructed several interesting supergravity-matter systems.

The present paper, on one hand, is a companion to [1]. Here we derive those technical

details that were stated in [1] without proof. In particular, we show that the requirement of

projective invariance allows one to uniquely reconstruct the locally supersymmetric action

in the Wess-Zumino gauge. On the other hand, this paper contains an important new

result. Specifically, we formulate a manifestly locally supersymmetric action that reduces

to that given in [1] upon imposing the Wess-Zumino gauge. This result completes the

formal structure of 5D N = 1 superfield supergravity.
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Before turning to the technical aspects of this work, we would like to give two general

comments. First, five-dimensional N = 1 supergravity1 [6] and its matter couplings have

extensively been studied at the component level, both in on-shell [7 – 9] and off-shell [10 –

12] settings. It is thus natural to ask: Are there still good reasons for developing superspace

formulations? We believe the answer is “Yes.” There are several ways to justify this claim,

and the most practical is the following. Unlike the component schemes developed, super-

space approaches have the potential to offer a generating formalism to realize most general

sigma-model couplings, and hence to construct general quaternionic Kähler manifolds. It

is instructive to discuss the situation with hypermultiplets. In the component formula-

tions2 of [10, 11], one makes use of an off-shell realization for the hypermultiplet with

finitely many auxiliary fields and an intrinsic central charge. As is well-known, it is the

presence of central charge which makes it impossible to cast general quaternionic Kähler

couplings in terms of such off-shell hypermultiplets. On the other hand, the projective

superspace approach offers nice off-shell formulations without central charge. Specifically,

there are infinitely many off-shell realizations with finitely many auxiliary fields for a neu-

tral hypermultiplet (they are the called O(2n) multiplets, where n = 2, 3 . . . , following the

terminology of [13]), and a unique formulation for a charged hypermultiplet with infinitely

many auxiliary fields (the so-called polar hypermultiplet).

Our second comment concerns the choice made in this paper to use the projective

superspace setting to formulate supergravity-matter systems. Why not harmonic super-

space [14, 15]? As is known, both approaches can be used to describe supersymmetric

theories with eight supercharges in D ≤ 6 space-time dimensions. There are, however, two

major differences between them: (i) the structure of off-shell supermultiplets used; and

(ii) the supersymmetric action principle chosen. It is due to these differences that the two

approaches are complementary to each other in some respects. From the point of view of

supergravity theories with eight supercharges in D ≤ 6 space-time dimensions, harmonic

superspace offers powerful prepotential formulations [16, 17]. On the other hand, as will be

shown in this paper, projective superspace is ideal for developing covariant geometric for-

mulations for supergravity-matter systems, similar to the famous Wess-Zumino approach

for 4D N = 1 supergravity [18]. The point is that projective superspace is a robust scheme

for supersymmetric model-buliding, see, e.g., [19] for the recent construction of hyperkähler

metrics on cotangent bundles of Hermitian symmetric spaces.

This paper is organized as follows. In section 2 we provide a complete solution of the

Bianchi identities for the superspace geometry corresponding to the minimal 5D N = 1

supergravity multiplet [20]. In section 3 we formulate, following [1], off-shell projective

supermultiplets, and then construct a manifestly locally supersymmetric action. Section

4 is devoted to the technicalities of the Wess-Zumino gauge for supergravity. Section 5

demonstrates that the locally supersymmetric action in the Wess-Zumino gauge is uniquely

determined from the requirement of projective invariance. Our 5D conventions and useful

identities are collected in the appendix.

1On historical grounds, 5D simple (N = 1) supersymmetry and supergravity are often labeled N = 2.
2Refs. [12] deal with on-shell hypermultiplets only.
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2. Superspace geometry of the minimal supergravity multiplet

In this section we present a complete solution to the Bianchi identities for the constraints

on the superspace torsions that were introduced by Howe3 in 1981 [20] and correspond to

the so-called minimal 5D N = 1 supergravity multiplet.4 The results of this section were

used in [1] without proof.

Let zM̂ = (xm̂, θµ̂
i ) be local bosonic (x) and fermionic (θ) coordinates parametrizing

a curved five-dimensional N = 1 superspace M5|8, where m̂ = 0, 1, . . . , 4, µ̂ = 1, . . . , 4,

and i = 1, 2. The Grassmann variables θµ̂
i are assumed to obey the standard pseudo-

Majorana reality condition (θµ̂
i )∗ = θi

µ̂ = εµ̂ν̂ ε
ij θν̂

j (see the appendix for our 5D notation

and conventions). Following [20], the tangent-space group is chosen to be SO(4, 1)×SU(2),

and the superspace covariant derivatives D
Â

= (Dâ,D
i
α̂) ≡ (Dâ,Dα̂) have the form

D
Â

= E
Â

+ Ω
Â

+ Φ
Â

+ V
Â
Z . (2.1)

Here E
Â

= E
Â

M̂ (z) ∂
M̂

is the supervielbein, with ∂
M̂

= ∂/∂zM̂ ,

Ω
Â

=
1

2
Ω

Â
b̂ĉM

b̂ĉ
= Ω

Â
β̂γ̂ M

β̂γ̂
, M

âb̂
= −M

b̂â
, M

α̂β̂
= M

β̂α̂
(2.2)

is the Lorentz connection,

Φ
Â

= Φ kl
Â

Jkl , Jkl = Jlk (2.3)

is the SU(2)-connection, and Z the central-charge generator, [Z,D
Â
] = 0. The Lorentz

generators with vector indices (M
âb̂

) and spinor indices (M
α̂β̂

) are related to each other

by the rule: M
âb̂

= (Σ
âb̂

)α̂β̂M
α̂β̂

(for more details, see the appendix). The generators of

SO(4, 1) × SU(2) act on the covariant derivatives as follows:5

[Jkl,Di
α̂] = εi(kD

l)
α̂ , [M

α̂β̂
,Dk

γ̂ ] = εγ̂(α̂D
k

β̂)
, [M

âb̂
,Dĉ] = 2ηĉ[âDb̂] , (2.4)

where Jkl = εkiεljJij .

The supergravity gauge group is generated by local transformations of the form

D
Â
→ D′

Â
= eK D

Â
e−K , K = KĈ(z)D

Ĉ
+

1

2
K ĉd̂(z)M

ĉd̂
+Kkl(z)Jkl + τ(z)Z , (2.5)

with all the gauge parameters being neutral with respect to the central charge Z, obeying

natural reality conditions, and otherwise arbitrary. Given a tensor superfield U(z), with

its indices suppressed, it transforms as follows:

U → U ′ = eK U . (2.6)

3The choice of the constraints given in [20] was motivated by the structure of the 5D N = 1 supercur-

rent [21].
4This supermultiplet was re-discovered almost twenty years later by Zucker [10] who essentially elabo-

rated the component implications of the superspace formulation given in [20].
5The operation of (anti)symmetrization of n indices is defined to involve a factor (n!)−1.
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The covariant derivatives obey (anti)commutation relations of the general form

[D
Â
,D

B̂
} = T

ÂB̂
ĈD

Ĉ
+

1

2
R

ÂB̂
ĉd̂M

ĉd̂
+R

ÂB̂
klJkl + F

ÂB̂
Z , (2.7)

where T
ÂB̂

Ĉ is the torsion, R
ÂB̂

kl and R
ÂB̂

ĉd̂ the SU(2)- and SO(4, 1)-curvature tensors,

respectively, and F
ÂB̂

the central charge field strength.

The Bianchi identities are:
∑

(ÂB̂Ĉ)

[D
Â
, [D

B̂
,D

Ĉ
}} = 0 , (2.8)

with the graded cyclic sum assumed. The Bianchi identities are equivalent to the following

equations on the torsion and curvature tensors:

0 =
∑

(ÂB̂Ĉ)

(
R

ÂB̂ Ĉ
D̂ −D

Â
T

B̂Ĉ
D̂ + T

ÂB̂
ÊT

ÊĈ
D̂
)
, (2.9a)

0 =
∑

(ÂB̂Ĉ)

(
D

Â
R

B̂Ĉ
kl − T

ÂB̂
D̂R

D̂Ĉ
kl
)
, 0 =

∑

(ÂB̂Ĉ)

(
D

Â
R

B̂Ĉ
ρ̂τ̂ − T

ÂB̂
D̂R

D̂Ĉ
ρ̂τ̂
)
,(2.9b)

0 =
∑

(ÂB̂Ĉ)

(
D

Â
F

B̂Ĉ
− T

ÂB̂
D̂F

D̂Ĉ

)
, (2.9c)

where6

R
ÂB̂ Ĉ

D̂ ≡ R
ÂB̂

ρ̂τ̂ (Mρ̂τ̂ )Ĉ
D̂ +R

ÂB̂
kl(Jkl)Ĉ

D̂ , (2.10a)

[M
δ̂ρ̂
,D

Â
] ≡ (M

δ̂ρ̂
)
Â

B̂D
B̂
, [Jkl,DÂ

] ≡ (Jkl)Â
B̂D

B̂
, (2.10b)

(Mρ̂τ̂ )α̂
β̂ = δi

jεα̂(ρ̂δ
β̂
τ̂ ) , (Mρ̂τ̂ )â

b̂ = (Σâ
b̂)ρ̂τ̂ , (Jkl)α̂

β̂ = −δβ̂
α̂δ

i
(kεl)j , (2.10c)

with the other components of (Mρ̂τ̂ )
Ĉ

D̂ and (Jkl)Ĉ
D̂ being equal to zero.

Similar to the well-known case of four-dimensional N = 1 supergravity (see [22 – 24]

for comprehensive reviews), the geometric superfields in (2.1) contain too many component

fields to describe an irreducible supergravity multiplet. This can be cured by imposing co-

variant algebraic constraints on the geometry of superspace. In accordance with a theorem

due to Dragon [25], it is sufficient to impose constraints on the torsion, since the curvature

is completely determined in terms of the torsion in supergravity theories formulated in

superspace.

As demonstrated in [20], in order to realize the minimal supergravity multiplet in the

above framework, one has to impose the following constraints on various components of

the torsion of dimensions 0, 1/2 and 1:

T i
α̂

j

β̂

ĉ = −2i εij(Γĉ)
α̂β̂
, F i

α̂
j

β̂
= −2i εijε

α̂β̂
, (dimension 0) (2.11a)

T i
α̂

j

β̂

γ̂
k = T i

α̂b̂
ĉ = F i

α̂b̂
= 0 , (dimension 1/2) (2.11b)

T
âb̂

ĉ = Tâ
l

β̂

β̂
(j εk)l = 0 . (dimension 1) (2.11c)

Under these constraints, the Bianchi identities (2.9a), (2.9c) become non-trivial equations

that have to be solved in order to determine the non-vanishing components of the torsion.

6The reader should keep in mind that we often use the condensed notation: Aα̂ ≡ A
i

α̂ and A
α̂
≡ A

α̂

i .
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2.1 The algebra of covariant derivatives

In this subsection, we summarize the results of the solution to the Bianchi identities based

on the constraints (2.11a)–(2.11c), while the technical details will be given in the remainder

of this section.

The algebra of covariant derivatives has the form [1]

{
Di

α̂,D
j

β̂

}
= −2i εijD

α̂β̂
− 2i εijε

α̂β̂
Z

+3i ε
α̂β̂
εijSklJkl − 2i(Σâb̂)

α̂β̂

(
F

âb̂
+N

âb̂

)
J ij

−i ε
α̂β̂
εijF ĉd̂M

ĉd̂
+

i

4
εijεâb̂ĉd̂êN

âb̂
(Γĉ)α̂β̂

M
d̂ê

+ 4iSijM
α̂β̂
, (2.12a)

[Dâ,D
j

β̂
] =

1

2
(Γâ)β̂

γ̂Sj
kD

k
γ̂ −

1

2
F

âb̂
(Γb̂)

β̂
γ̂Dj

γ̂ −
1

8
ε
âb̂ĉd̂ê

N d̂ê(Σb̂ĉ)
β̂

γ̂Dj
γ̂

+
(
− 3εjkΞ

âβ̂
l +

5

4
(Γâ)β̂

α̂εjkFα̂
l −

1

4
(Γâ)β̂

α̂εjkNα̂
l
)
Jkl

+
( 1

2
(Γâ)β̂

ρ̂Dj
ρ̂F

ĉd̂ −
1

2
(Γĉ)

β̂
ρ̂Dj

ρ̂F
d̂
â +

1

2
(Γd̂)

β̂
ρ̂Dj

ρ̂F
ĉ
â

)
M

ĉd̂
, (2.12b)

[Dâ,Db̂
] =

i

2

(
Dγ̂

kFâb̂

)
Dk

γ̂ −
i

8

(
Dγ̂(kD

l)
γ̂ Fâb̂

)
Jkl + F

âb̂
Z

+
( 1

4
εĉd̂m̂n̂[âDb̂]N

m̂n̂ +
1

2
δĉ
[âNb̂]m̂N

d̂m̂ −
1

4
Nâ

ĉN
b̂
d̂ −

1

8
δĉ
âδ

d̂

b̂
N m̂n̂Nm̂n̂

+
i

8
(Σĉd̂)γ̂δ̂Dk

γ̂Dδ̂k
F

âb̂
− Fâ

ĉF
b̂
d̂ +

1

2
δĉ
âδ

d̂

b̂
SijSij

)
M

ĉd̂
. (2.12c)

The components of the torsion in (2.12a)–(2.12c) obey further constraints implied by

the Bianchi identities, some of which can be conveniently expressed in terms of the three

irreducible components of Dk
γ̂Fα̂β̂

: a completely symmetric third-rank tensor W
α̂β̂γ̂

k, a

gamma-traceless spin-vector Ξâ γ̂
k and a spinor Fγ̂

k. These components originate as follows:

Dk
γ̂Fα̂β̂

= W
α̂β̂γ̂

k + Ξ
γ̂(α̂β̂)

k + εγ̂(α̂Fβ̂)
k ,

Ξ
γ̂α̂β̂

k = (Γâ)γ̂α̂Ξâ
β̂

k , (Γâ)α̂
β̂Ξ

âβ̂
i = 0 , W

α̂β̂γ̂
k = W(α̂β̂γ̂)

k . (2.13)

It is useful to have eq. (2.13) rewritten in the equivalent form (W
âb̂γ̂

k = (Σâb̂)α̂β̂W
α̂β̂γ̂

k)

Dk
γ̂Fâb̂

= W
âb̂γ̂

k + 2(Γ[â)γ̂
δ̂Ξ

b̂]δ̂
k + (Σ

âb̂
)γ̂

δ̂F
δ̂
k , (Γâ)α̂

γ̂W
âb̂γ̂

i = 0 . (2.14)

The dimension 3/2 Bianchi identities are as folllows:

Dk
γ̂Nα̂β̂

= −W
α̂β̂γ̂

k + 2Ξ
γ̂(α̂β̂)

k + εγ̂(α̂Nβ̂)
k , (2.15a)

Dk

β̂
Sjl =

1

10
(Σ

âb̂
)
β̂

δ̂εk(jD
l)

δ̂

(
3F âb̂ +N âb̂

)
= −

1

2
εk(j

(
3F

β̂
l) + N

β̂
l)
)
. (2.15b)

Equation (2.15a) can be equivalently expressed in the form

Dk
γ̂Nâb̂

= −W
âb̂γ̂

k + 4(Γ[â)γ̂
δ̂Ξ

b̂]δ̂
k + (Σ

âb̂
)γ̂

δ̂N
δ̂
k . (2.16)

– 5 –
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The dimension 2 Bianchi identities are:

D
(k

[β̂
N

δ̂]
l) = −D

(k

[β̂
F

δ̂]
l) −

3

4
Dγ̂(kΞ

β̂δ̂γ̂
l) , (2.17a)

(Γâ)
α̂β̂Dk

α̂Nβ̂k
= (Γâ)

α̂β̂Dk
α̂Fβ̂k

+ 4Dα̂
k Ξâα̂

k −
4i

3
εâm̂n̂p̂q̂

(
N m̂n̂N p̂q̂ + F m̂n̂F p̂q̂

)
, (2.17b)

(Σâb̂)α̂β̂Dk
α̂Nβ̂k

= −5(Σâb̂)α̂β̂Dk
α̂Fβ̂k

+ 6(Γ[â)α̂β̂Dk
α̂Ξb̂]

β̂k
+ 16iFm̂

[âN b̂]m̂ , (2.17c)

D
(k
[α̂Wβ̂]γ̂δ̂

l) =
1

2
ε
α̂β̂

D
(k
(γ̂Fδ̂)

l) −
1

2
D

(k
[α̂εβ̂](γ̂Fδ̂)

l) −
1

2
D

(k
(γ̂εδ̂)[α̂Fβ̂]

l)

+
3

4
ε
α̂β̂

Dρ̂(kΞ
ρ̂(γ̂δ̂)

l) −
3

16
εγ̂[α̂D

ρ̂(kΞ
β̂]δ̂ρ̂

l) −
3

16
ε
δ̂[α̂D

ρ̂(kΞ
β̂]γ̂ρ̂

l)

−D
(k
[α̂Ξ

β̂](γ̂δ̂)
l) + 2i

(
ε
α̂β̂
N

γ̂δ̂
− εγ̂[α̂Nβ̂]δ̂ − ε

δ̂[α̂Nβ̂]γ̂

)
Skl , (2.17d)

0 = DâFb̂ĉ
+ D

b̂
Fĉâ + DĉFâb̂

. (2.17e)

Note that eq. (2.17e) can equivalently be rewritten as

0 = Dα̂
kW

âb̂
α̂

k + 2εâb̂ĉd̂ê(Σ
ĉd̂

)α̂β̂Dk
α̂Ξ

êβ̂k
− 3(Σâb̂)α̂β̂Dk

α̂Fβ̂k
+ 16iFĉ

[âN b̂]ĉ . (2.18)

2.2 Solving the Bianchi identities: dimension 1

Now, we turn to solving the Bianchi identities (2.9a)–(2.9c) based on the con-

straints (2.11a)–(2.11c). It is standard and useful to organize the analysis in accordance

with the increasing dimension of the identities involved (from dimension 1/2 to 3).

The important simplification is that it is sufficient to analyze only the Bianchi identi-

ties (2.9a) and (2.9c), due to Dragon’s second theorem [25]. The latter states that all the

equations (2.9b) are identically satisfied, provided (2.9a) and (2.9c) hold.

For dimension 1/2, the relations (2.9a) with (Â = α̂, B̂ = β̂, Ĉ = γ̂, D̂ = d̂) and (2.9c)

with (Â = α̂, B̂ = β̂, Ĉ = γ̂) are identically satisfied.

For dimension 1, there occur several Bianchi identities that originate from eqs. (2.9a)

and (2.9c). Setting (Â = â, B̂ = β̂, Ĉ = γ̂, D̂ = d̂) in (2.9a) gives

0 = Rj

β̂

k
γ̂ â

d̂ + 2iTâ
j

β̂

ρ̂k(Γd̂)ρ̂γ̂ + 2iTâ
k
γ̂
ρ̂j(Γd̂)

ρ̂β̂
, (2.19)

while the choice (Â = α̂, B̂ = β̂, Ĉ = γ̂, D̂ = δ̂) leads to

0 = Ri
α̂

j

β̂
γ̂

δ̂δk
l +Rj

β̂

k
γ̂ α̂

δ̂δi
l +Rk

γ̂
i
α̂β̂

δ̂δj
l +Ri

α̂
j

β̂

k
lδ

δ̂
γ̂ +Rj

β̂

k
γ̂

i
lδ

δ̂
α̂ +Rk

γ̂
i
α̂

j
lδ

δ̂

β̂

− 2iεij(Γê)
α̂β̂
Tê

k
γ̂

δ̂
l − 2iεjk(Γê)

β̂γ̂
Tê

i
α̂

δ̂
l − 2iεki(Γê)γ̂α̂Tê

j

β̂

δ̂
l . (2.20)

Choosing (Â = â, B̂ = β̂, Ĉ = γ̂) in (2.9c) gives

0 = Tâ
j

β̂

k
γ̂ + εjk(Γd̂)

β̂γ̂
F

d̂â
+ Tâ

k
γ̂

j

β̂
. (2.21)

Eq. (2.21) implies that the dimension 1 torsion can be represented in the form:

Tâ
j

β̂

k
γ̂ =

1

2
εjk(Γb̂)

β̂γ̂
F

âb̂
−

1

4
εjk(Σb̂ĉ)

β̂γ̂
T1âb̂ĉ

+
1

2
(Γb̂)

β̂γ̂
T1âb̂

jk −
1

4
ε
β̂γ̂
T1â

jk , (2.22)
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where

T1â
jk = T1â

kj , T1âb̂
jk = T1âb̂

kj , T1âb̂ĉ
= −T1âĉb̂

. (2.23)

Equation (2.19) expresses the dimension 1 Lorentz curvature in terms of the torsion

Ri
α̂

j

β̂

ĉd̂ = −2iT ĉi
α̂

ρ̂j(Γd̂)
ρ̂β̂

− 2iT ĉj

β̂

ρ̂i(Γd̂)ρ̂α̂ . (2.24)

Since Ri
α̂

j

β̂

ĉd̂ = −Ri
α̂

j

β̂

d̂ĉ, the following equation occurs

0 = (Γ(â)ρ̂γ̂T
d̂)j

β̂

ρ̂k + (Γ(â)
ρ̂β̂
T d̂)k

γ̂
ρ̂j =

1

2
(Γĉ)

β̂γ̂
εjkT1

(âd̂)
ĉ − 2(Σb̂(â)

β̂γ̂
T1

d̂)
b̂
jk . (2.25)

This holds if and only if T1âb̂
kl and T1âb̂ĉ

have the form:

T1âb̂
ij =

1

5
η

âb̂
ηm̂n̂T1m̂n̂

ij ≡ η
âb̂
Sij , Sij = Sji ,

T1âb̂ĉ
= −T1b̂âĉ

≡ N
âb̂ĉ
, N

âb̂ĉ
= N[âb̂ĉ] , (2.26)

for some symmetric tensor Sij obeying the reality condition Sij = Sij , and a completely

antisymmetric real tensor N
âb̂ĉ

. As a result, the Lorentz curvature (2.24) takes the form:

Ri
α̂

j

β̂

ĉd̂ = −iε
α̂β̂
εijF ĉd̂ −

i

2
εijN ĉd̂ê(Γê)α̂β̂

+ 4iSij(Σĉd̂)
α̂β̂

. (2.27)

Let us now turn to eq. (2.20). Taking the trace over the indices γ̂ and δ̂, one derive

the following equation for the SU(2)-curvature:

4Ri
α̂

j

β̂

kl +Rk
α̂

j

β̂

il +Ri
α̂

k

β̂

jl = ∆i
α̂

j

β̂

kl , (2.28)

with

∆i
α̂

j

β̂

kl = 15iε
α̂β̂
εijSkl +

5i

2
(Γĉ)

α̂β̂
εijT1ĉ

kl + i(Σd̂ê)
α̂β̂
εk(iεj)l

(
6F

d̂ê
+ ε

d̂êâb̂ĉ
N âb̂ĉ

)
. (2.29)

Here we have used the explicit expressions for the dimension 1 torsion and for the Lorentz

curvature in terms of Skl, T1â
jk and N

âb̂ĉ
.

Equation (2.28) allows us to express Ri
α̂

j

β̂

kl in terms of ∆i
α̂

j

β̂

kl, and the result is

Ri
α̂

j

β̂

kl =
1

90

(
26∆i

α̂
j

β̂

kl − ∆j
α̂

i

β̂

kl + 2∆k
α̂

i

β̂

jl − 7∆k
α̂

j

β̂

il − 7∆i
α̂

k

β̂

jl + 2∆j
α̂

k

β̂

il
)
. (2.30)

It is useful to introduce the Hodge-dual of N
âb̂ĉ

, N
âb̂

≡ 1
6εâb̂ĉd̂ê

N ĉd̂ê. Then, the SU(2)-

curvature can be rewritten in the form:

Ri
α̂

j

β̂

kl = 3iε
α̂β̂
εijSkl +

i

2
(Γĉ)

α̂β̂
εijT1ĉ

kl + 2i(Σâb̂)
α̂β̂

(
F

âb̂
+N

âb̂

)
εk(iεj)l . (2.31)

Using the results obtained and the fact that the constraint (2.11c) is equivalent to

T1â
jk = 0 , (2.32)

eq. (2.20) is now solved, and the dimension 1 torsion becomes

Tâ
j

β̂

k
γ̂ =

1

2
(Γâ)β̂γ̂

Sjk +
1

2
εjk(Γb̂)

β̂γ̂
F

âb̂
−

1

4
εjk(Σb̂ĉ)

β̂γ̂
N

âb̂ĉ
. (2.33)

The final form for the SU(2)-curvature is

Ri
α̂

j

β̂

kl = 3iε
α̂β̂
εijSkl + 2i(Σâb̂)

α̂β̂

(
F

âb̂
+N

âb̂

)
εk(iεj)l . (2.34)
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2.3 Solving the Bianchi identities: dimension 3/2

For dimension 3/2, the relevant Bianchi identities come from both equations (2.9a)

and (2.9c). Setting (Â = â, B̂ = β̂, Ĉ = γ̂, D̂ = δ̂) in eq. (2.9a) gives

0 = Râ
j

β̂
γ̂
δ̂δk

l +Râ
k
γ̂ β̂

δ̂δj
l +Râ

j

β̂

k
lδ

δ̂
γ̂ +Râ

k
γ̂
j
lδ

δ̂

β̂

+Dj

β̂
Tâ

k
γ̂
δ̂
l + 2iεjk(Γê)

β̂γ̂
Tâê

δ̂
l + Dk

γ̂Tâ
j

β̂

δ̂
l , (2.35)

while the choice (Â = â, B̂ = b̂, Ĉ = γ̂, D̂ = d̂) in (2.9a) results in

0 = R
b̂
k
γ̂ â

d̂ −Râ
k
γ̂ b̂

d̂ + 2iT
âb̂

ρ̂k(Γd̂)ρ̂γ̂ . (2.36)

Choosing (Â = â, B̂ = b̂, Ĉ = γ̂) in eq. (2.9c) gives

0 = 2iT
âb̂

k
γ̂ + Dk

γ̂Fâb̂
. (2.37)

For the analysis of the above identities, it is advantageous to make use of the decom-

position of a spin-tensor A
âb̂γ̂

= −A
b̂âγ̂

into its irreducible components:

A
âb̂γ̂

= A
âb̂γ̂

+ 2(Γ[â)γ̂
δ̂A

b̂]δ̂ + (Σ
âb̂

)γ̂
δ̂A

δ̂
, (Γâ)α̂

γ̂Aâγ̂ = (Γâ)α̂
γ̂A

âb̂γ̂
= 0 . (2.38a)

Switching to the spinor notations, we have have to deal with

A
α̂β̂γ̂

:=
1

2
(Σâb̂)

α̂β̂
A

âb̂γ̂
= A(α̂β̂)γ̂ , (2.39)

and the corresponding decomposition is

A
α̂β̂γ̂

= A
α̂β̂γ̂

+ Ã
γ̂(α̂β̂) + εγ̂(α̂Aβ̂) , A

α̂β̂γ̂
= A(α̂β̂γ̂) ,

Ã
α̂β̂γ̂

:= (Γâ)α̂β̂
Aâ

γ̂ = −Ã
β̂α̂γ̂

, εα̂β̂Ã
α̂β̂γ̂

= εα̂γ̂Ã
α̂β̂γ̂

= 0 , Ã[α̂β̂γ̂] = 0 . (2.40)

From equation (2.37) we immediately read off the dimension 3/2 torsion

T
âb̂

γ̂
k =

i

2
Dγ̂

kFâb̂
. (2.41)

Applying the decomposition (2.40) to the right-hand side of (2.41) gives

Dk
γ̂Fα̂β̂

= W
α̂β̂γ̂

k + Ξ
γ̂(α̂β̂)

k + εγ̂(α̂Fβ̂)
k . (2.42)

Next, equation (2.36) is solved by

Râ
j

β̂

ĉd̂ =
1

2
(Γâ)β̂

δ̂Dj

δ̂
F ĉd̂ −

1

2
(Γĉ)

β̂
δ̂Dj

δ̂
F d̂

â +
1

2
(Γd̂)

β̂
δ̂Dj

δ̂
F ĉ

â . (2.43a)

Equation (2.35) allows us to compute the SU(2)-curvature Râ
j

β̂

kl. Taking the trace

over γ̂ and δ̂ in eq. (2.35) gives

4Râ
j

β̂

kl +Râ
k

β̂

jl = ∆â
j

β̂

kl , (2.44)
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where

∆â
j

β̂

kl = −
7

4
(Γb̂)

β̂
γ̂Dk

γ̂Fâb̂
εjl − εjk(Γb̂)

β̂
γ̂Dl

γ̂Fâb̂
−

1

8
ε
âb̂ĉd̂ê

(Σd̂ê)
β̂

γ̂Dk
γ̂F

b̂ĉεjl

+
1

4
εjl(Σb̂ĉ)

β̂
γ̂Dk

γ̂Nâb̂ĉ
−

1

2
(Γâ)β̂

γ̂Dk
γ̂S

jl . (2.45)

Equation (2.44) is solved by

Râ
j

β̂

kl =
4

15
∆â

j

β̂

kl −
1

15
∆â

k

β̂

jl . (2.46)

Since Râ
j

β̂

kl is symmetric in k and l, eq. (2.46) can be seen to be consistent under the

conditions:

Dα̂kS
kj =

3

20
(Σâb̂)α̂

γ̂Dj
γ̂

(
3F

âb̂
+N

âb̂

)
, (2.47a)

Dk
γ̂Nα̂β̂

= N
α̂β̂γ̂

k + 2Ξ
γ̂(α̂β̂)

k + εγ̂(α̂Nβ̂)
k . (2.47b)

Here Ξ
âβ̂

k is the spin-vector which occurs in (2.42). At this point, the SU(2)-curvature has

been completely determined.

Râ
j

β̂

kl = −
4

5
(Γb̂)

β̂
γ̂εj(kD

l)
γ̂ Fâb̂

−
1

30
ε
âb̂ĉd̂ê

(Σd̂ê)
β̂

γ̂εj(kD
l)
γ̂

(
F b̂ĉ +N b̂ĉ

)

−
2

15
(Γâ)β̂

γ̂D
(k
γ̂ S

l)j +
1

30
(Γâ)β̂

γ̂Dj
γ̂S

kl . (2.48)

Using the previous results, one can prove that equation (2.35) implies the last two

constraints:

N
α̂β̂γ̂

k = −W
α̂β̂γ̂

k , (2.49a)

Dk

β̂
Sjl =

1

10
(Σ

âb̂
)
β̂

δ̂εk(jD
l)

δ̂

(
3F âb̂ +N âb̂

)
= −

1

2
εk(j

(
3F

β̂
l) + N

β̂
l)
)
. (2.49b)

It is important to note that (2.49b) implies equation (2.47a).

Expression (2.48) can actually be further simplified, using

eqs. (2.14), (2.13), (2.16), (2.15a) and (2.15b). The final expression for the SU(2)-

curvature is

Râ
j

β̂

kl = −3εj(kΞ
âβ̂

l) +
5

4
(Γâ)β̂

α̂εj(kFα̂
l) −

1

4
(Γâ)β̂

α̂εj(kNα̂
l) . (2.50)

2.4 Solving the Bianchi identities: dimension 2

For dimension 2, the relevant Bianchi identities are generated from eq. (2.9a) with (Â =

â, B̂ = b̂, Ĉ = γ̂, D̂ = δ̂)

0 = R
âb̂

k
lδ

δ̂
γ̂ +R

âb̂γ̂
δ̂δk

l −DâTb̂
k
γ̂
δ̂
l + D

b̂
Tâ

k
γ̂

δ̂
l − T

b̂
k
γ̂
ρ̂
q Tâ

q
ρ̂
δ̂
l −Dk

γ̂Tâb̂
δ̂
l + Tâ

k
γ̂
ρ̂
q Tb̂

q
ρ̂
δ̂
l , (2.51)

from (2.9a) with (Â = â, B̂ = b̂, Ĉ = ĉ, D̂ = d̂)

0 = R
âb̂ĉ

d̂ +R
b̂ĉâ

d̂ +Rĉâb̂
d̂ , (2.52)
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and also from (2.9c) with (Â = â, B̂ = b̂, Ĉ = ĉ)

0 = DâFb̂ĉ
+ D

b̂
Fĉâ + DĉFâb̂

. (2.53)

Let us first analyze eq. (2.51). This can be used to extract the curvatures. We start

by rewriting (2.51) in the form:

R
âb̂

klε
γ̂δ̂

+R
âb̂γ̂δ̂

εkl = ∆
âb̂

k
γ̂

l

δ̂
, (2.54)

with

∆
âb̂

k
γ̂
l

δ̂
= −

i

2
Dk

γ̂D
l

δ̂
F

âb̂
− εkl(Γĉ)

γ̂δ̂
D[âFb̂]ĉ +

1

4
εklε

m̂n̂d̂ê[â(Σ
m̂n̂)

γ̂δ̂
D

b̂]N
d̂ê + (Γ[â)γ̂δ̂

D
b̂]S

kl

+εkl(Σĉd̂)
γ̂δ̂
FâĉFb̂d̂

+
1

4
εklF m̂

[âεb̂]m̂n̂d̂ê
(Γn̂)

γ̂δ̂
N d̂ê − 2(Σĉ

[â)γ̂δ̂
F

b̂]ĉS
kl

−
1

2
(Σĉ

[â)γ̂δ̂
N

b̂]d̂N
ĉd̂ −

1

4
(Σĉd̂)

γ̂δ̂
N âĉN b̂d̂ −

1

8
(Σ

âb̂
)
γ̂δ̂
N ĉd̂N

ĉd̂

+
1

4
ε
âb̂ĉd̂ê

(Γĉ)
γ̂δ̂
N d̂êSkl +

1

2
(Σ

âb̂
)
γ̂δ̂
εklSijSij . (2.55)

Considering the part of (2.54) which is symmetric in γ̂ and δ̂ and also antisymmetric in

k and l, we read off the expression for the Lorentz curvature R
âb̂

ĉd̂ = −1
2εkl(Σ

ĉd̂)γ̂δ̂∆
âb̂

k
γ̂
l

δ̂
.

The result is

R
âb̂

ĉd̂ =
1

4
εĉd̂m̂n̂[âDb̂]N

m̂n̂ +
i

8
(Σĉd̂)γ̂δ̂Dk

γ̂Dδ̂k
F

âb̂
−

1

8
δ
[ĉ
â δ

d̂]

b̂
N m̂n̂Nm̂n̂

+
1

2
δ
[ĉ
[âNb̂]m̂N

d̂]m̂ −
1

4
Nâ

[ĉN
b̂
d̂] − Fâ

[ĉF
b̂
d̂] +

1

2
δ
[ĉ
â δ

d̂]

b̂
SijSij . (2.56)

Next, isolating the part of (2.54) which is proportional to ε
γ̂δ̂

and symmetric in k, l, we

can determine the SU(2)-curvature R
âb̂

kl = −1
4ε

γ̂δ̂∆
âb̂

k
γ̂
l

δ̂
. The result is

R
âb̂

kl = −
i

8
Dγ̂(kD

l)
γ̂ Fâb̂

. (2.57)

Equation (2.54) has allowed us to determine the curvatures. However it still contains

some nontrivial information. Using the relations (2.53), (2.56) and (2.57), eq. (2.54) can

be seen to reduce to

0 = −
i

8
(Γĉ)

γ̂δ̂D
(k
γ̂ D

l)

δ̂
F

âb̂
− ηĉ[âDb̂]S

kl −
1

4
ε
âb̂ĉd̂ê

N d̂êSkl . (2.58)

This implies

DâS
kl =

i

16
(Γb̂)γ̂δ̂D

(k
γ̂ D

l)

δ̂
F

âb̂
= −

3i

16
Dγ̂(kΞâγ̂

l) −
i

8
(Γâ)

γ̂δ̂D
(k
γ̂ F

δ̂
l) . (2.59)

Next, due to the identity

Dâ =
i

8
εij(Γâ)

α̂β̂Di
α̂D

j

β̂
+

1

8
ε
âb̂ĉd̂ê

N b̂ĉM d̂ê , (2.60)
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and the dimension-3/2 constraint (2.15b) that determines Di
α̂S

kl, it also holds

DâS
kl = −

3i

16
(Γâ)

α̂β̂D
(k
α̂ F

β̂
l) −

i

16
(Γâ)

α̂β̂D
(k
α̂ N

β̂
l) . (2.61)

Now, requiring the compatibility of the equations (2.59) and (2.61), we generate the

constraint

(Γâ)
α̂β̂D

(k
α̂ N

β̂
l) = −(Γâ)

α̂β̂D
(k
α̂ F

β̂
l) + 3Dγ̂(kΞâγ̂

l) . (2.62)

This turns out to be equivalent to (2.17a), since

Dα̂(kNα̂
l) =

1

5
{D

(k
α̂ ,D

l)

β̂
}N α̂β̂ =

4i

5
M

α̂β̂
N α̂β̂ = 0 . (2.63)

Similar considerations give Dα̂(kFα̂
l) = 0.

Further analysis of equation (2.58) leads to another constraint, eq. (2.17d).

The Bianchi identity (2.53) is equivalent to εâb̂ĉd̂êDĉFd̂ê
= 0. The latter can be rewrit-

ten, with the aid of (2.60), as follows:

0 = εâb̂ĉd̂ê
(

i(Γĉ)
α̂β̂Dk

α̂Dβ̂k
F

d̂ê
+ εĉ

m̂n̂p̂q̂Nm̂n̂Mp̂q̂Fd̂ê

)
, (2.64)

which, using (2.14), can be seen to be equivalent to equation (2.18).

Now, consider the Bianchi identity (2.52). Using the Lorentz curvature (2.56),

eq. (2.52) turns out to be equivalent to

DâNb̂ĉ
=

i

8
ε
b̂ĉm̂n̂p̂

(Σâ
m̂)γ̂δ̂Dk

γ̂Dδ̂k
F n̂p̂ +

i

12
η

â[b̂εĉ]m̂n̂p̂q̂(Σ
m̂n̂)γ̂δ̂Dk

γ̂Dδ̂k
F p̂q̂

−
1

12
ε
b̂ĉm̂n̂p̂

(
4Fâ

m̂F n̂p̂ +Nâ
m̂N n̂p̂

)
. (2.65)

The latter can rewritten as

DâNb̂ĉ
=

i

16
ε
âb̂ĉd̂ê

Dδ̂kW d̂ê
δ̂k
−

i

8
(Γâ)

γ̂δ̂Dk
γ̂Wb̂ĉδ̂k

+
i

2
(Σ

b̂ĉ
)γ̂δ̂Dk

γ̂Ξ
âδ̂k

+
i

8
ε
âb̂ĉm̂n̂

(Γm̂)γ̂δ̂Dk
γ̂Ξn̂

δ̂k

+
i

8
η

â[b̂(Γĉ])
γ̂δ̂Dk

γ̂Fδ̂k
+

i

8
ε
âb̂ĉd̂ê

(Σd̂ê)γ̂δ̂Dk
γ̂Fρ̂k−

1

12
ε
b̂ĉm̂n̂p̂

(
4Fâ

m̂F n̂p̂+Nâ
m̂N n̂p̂

)
. (2.66)

On the other hand, one can compute DâNb̂ĉ
by using (2.60) and the dimension 3/2 Bianchi

identity (2.16). Then one gets

DâNb̂ĉ
= −

i

8
(Γâ)

α̂β̂Dk
α̂Wb̂ĉβ̂k

+
i

2
η

â[b̂D
α̂kΞĉ]α̂k − i(Σ

â[b̂)
α̂β̂Dk

α̂Ξ
ĉ]β̂k

−
i

16
ε
âb̂ĉd̂ê

(Σd̂ê)α̂β̂Dk
α̂Nβ̂k

+
i

8
η

â[b̂(Γĉ])
α̂β̂Dk

α̂Nβ̂k
−

1

2
ε
m̂n̂p̂â[b̂Nĉ]

m̂N n̂p̂ .(2.67)

Requiring the equivalence of (2.66) and (2.67) and making use of (2.18), one obtains the

constraints (2.17b) and (2.17c).

We have solved all Bianchi identities of dimension 2. Using the relations obtained, we

can still simplify some of the results. Making use of (2.66) allows us to rewrite the Lorentz
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curvature (2.56) in the form:

R
âb̂

ĉd̂ =
i

24
(Σ

âb̂
)γ̂δ̂Dk

γ̂Dδ̂k
F ĉd̂ +

i

12
(Σ[â

[ĉ)γ̂δ̂Dk
γ̂Dδ̂k

F
b̂]

d̂] +
i

24
(Σĉd̂)γ̂δ̂Dk

γ̂Dδ̂k
F

âb̂

−
1

3
F

âb̂
F ĉd̂ −

1

3
Fâ

[ĉF
b̂
d̂] −

1

12
N

âb̂
N ĉd̂ −

1

12
Nâ

[ĉN
b̂
d̂] +

1

2
δ
[ĉ
[â
N

b̂]m̂N
d̂]m̂

−
1

8
δ
[ĉ
â δ

d̂]

b̂
N m̂n̂Nm̂n̂ +

1

2
δ
[ĉ
â δ

d̂]

b̂
SijSij . (2.68)

Next, using the equation

Dγ̂(kW
âb̂γ̂

l) = 3(Σ
âb̂

)γ̂δ̂D
(k
γ̂ F

δ̂
l) − 4(Γ[â)

γ̂δ̂D
(k
γ̂ Ξ

b̂]δ̂
l) + 12iN

âb̂
Skl , (2.69)

which follows from (2.17d), one can see that the SU(2)-curvature (2.57) can be rewritten

as follows:

R
âb̂

kl =
3i

4
(Γ[â)

γ̂δ̂D
(k
γ̂ Ξ

b̂]δ̂
l) −

i

4
(Σ

âb̂
)γ̂δ̂D

(k
γ̂ F

δ̂
l) +

3

2
N

âb̂
Skl . (2.70)

Finally let us turn to the Bianchi identities of dimension 5/2 and 3. For dimension

5/2, there is only one nontrivial Bianchi identity. This is the identity (2.9a) with (Â =

â, B̂ = b̂, Ĉ = ĉ, D̂ = δ̂)

0 = −DâTb̂ĉ
δ̂
l + T

âb̂
ρ̂
q Tĉ

q
ρ̂
δ̂
l −D

b̂
Tĉâ

δ̂
l − T

b̂ĉ
ρ̂
q Tâ

q
ρ̂
δ̂
l −DĉTâb̂

δ̂
l − Tĉâ

ρ̂
q Tb̂

q
ρ̂
δ̂
l . (2.71)

This equation can be seen to be satisfied identically provided the Bianchi identities of lower

dimension hold. For dimension 3, there are no nontrivial Bianchi identities.

3. Projective superspace formalism

The projective superspace approach was originally formulated for rigid supersymmetric

theories with eight supercharges in four space-time dimensions [3, 4], and later it was

generalized to five [26] and six [27, 28] dimensions. Superconformal field theory in projective

superspace has also been developed in four and five dimensions [29, 30].

As demonstrated in [1], the concept of projective supermultiplets can naturally be ex-

tended to the case of 5D N = 1 supergravity. In this section, we first recall the definition of

covariant projective multiplets in curved superspace, following [1]. After that we formulate

a manifestly locally supersymmetric action principle.

To start with, it is instructive to recall the kinematical setup for projective superspace

in the case of 5D N = 1 supersymmetry. Let R5|8 denote the flat global superspace

parametrized by coordinates zÂ = (xâ, θα̂
i ). The corresponding covariant derivatives D

Â
=

(∂â,D
i
α̂) obey the algebra

{Di
α̂ , D

j

β̂
} = −2i εij

(
(Γĉ)

α̂β̂
∂ĉ + ε

α̂β̂
Z
)
, [Di

α̂ , ∂b̂
] = [Di

α̂ , Z] = 0 , (3.1)

which follows from (2.12a)–(2.12c) by setting Sij = N
âb̂

= F
âb̂

= 0. Making use of an

isotwistor u+
i ∈ C2 \{0} allows one to introduce a subset of strictly anti-commuting spinor

covariant derivatives D+
α̂ := u+

i D
i
α̂.

{D+
α̂ ,D

+

β̂
} = 0 . (3.2)
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Hence, one can define so-called analytic superfields Q(z, u+) constrained by D+
α̂Q = 0.

Such a superfield Q(z, u+) is called a projective supermultiplet, if it is holomorphic (on

an open subset of C2 \ {0}) and a homogeneous function of u+, Q(z, c u+) = cnQ(z, u+),

with c ∈ C∗. The isotwistor u+
i ∈ C2 \ {0} appears to be defined modulo the equivalence

relation u+
i ∼ c u+

i , with c ∈ C∗, since this is true for both the constraint D+
α̂Q = 0 and

the superfield Q(z, u+) itself. As a result, the projective multiplets live in the projective

superspace R4|8 × CP 1.

3.1 Projective supermultiplets

In curved superspace, the isotwistor variables u+
i ∈ C2 \ {0} are defined to be inert with

respect to the local group SU(2) [1] (see also [2]). Instead of the anticommutation rela-

tion (3.2), the operators D+
α̂ := u+

i Di
α̂ obey the following algebra:

{D+
α̂ ,D

+

β̂
} = −4i

(
F

α̂β̂
+N

α̂β̂

)
J++ + 4iS++M

α̂β̂
, (3.3)

where J++ := u+
i u

+
j J

ij and S++ := u+
i u

+
j S

ij . Eq. (3.3) follows from (2.12a). Now, for the

constraint D+
α̂Q = 0 to be consistent, Q(z, u+) must be scalar with respect to the Lorentz

group, M
α̂β̂
Q = 0, and also possess special properties with respect to the group SU(2),

that is, J++Q = 0. Let us define such multiplets, following [1].

A projective supermultiplet of weight n, Q(n)(z, u+), is a scalar superfield that lives

on M5|8, is holomorphic with respect to the isotwistor variables u+
i on an open domain of

C2 \ {0}, and is characterized by the following conditions:

(i) it obeys the covariant analyticity constraint

D+
α̂Q

(n) = 0 ; (3.4)

(ii) it is a homogeneous function of u+ of degree n, that is,

Q(n)(z, c u+) = cnQ(n)(z, u+) , c ∈ C∗ ; (3.5)

(iii) infinitesimal gauge transformations (2.5) act on Q(n) as follows:

δQ(n) =
(
KĈD

Ĉ
+KijJij

)
Q(n) ,

KijJijQ
(n) = −

1

(u+u−)

(
K++D−− − nK+−

)
Q(n) , K±± = Kij u±i u

±
j , (3.6)

where

D−− = u−i ∂

∂u+i
, D++ = u+i ∂

∂u−i
. (3.7)

The transformation law (3.6) involves an additional isotwistor, u−i , which is subject to the

only condition (u+u−) = u+iu−i 6= 0, and is otherwise completely arbitrary. By construc-

tion, Q(n) is independent of u−, i.e. ∂Q(n)/∂u−i = 0, and hence D++Q(n) = 0. One can
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see that δQ(n) is also independent of the isotwistor u−, ∂(δQ(n))/∂u−i = 0, due to (3.5).

It follows from (3.6)

J++Q(n) = 0 , J++ ∝ D++ , (3.8)

and hence the covariant analyticity constraint (3.4) is indeed consistent.

The transformation law (3.6) is a generalization of that for superconformal projective

supermultiplets in four and five dimensions [29, 30] and for projective supermultiplets in

the 5D N = 1 anti-de Sitter superspace [2].

It should be pointed out that the transformation law (3.6) corresponds to the projective

supermultiplets with zero central charge, ZQ(n) = 0. Such off-shell multiplets are most

interesting for applications, and our consideration will be restricted to their study. It is not

difficult, however, to modify (3.6) in order to be applicable to the case of off-shell projective

supermultiplets with an intrinsic zero central charge. The corresponding transformation

law is [1]

δQ(n) =
(
KĈD

Ĉ
+KijJij + τZ

)
Q(n) . (3.9)

As an example, we can consider an off-shell hypermultiplet with intrinsic central charge,

which is described by q+(z, u+) = u+
i q

i(z). It is this realization7 which is used in the

component approaches of [10, 11]. In this realization, the hypermultiplet becomes on-shell

provided Zq+ = 0.

Given a projective multiplet Q(n), its complex conjugate is not covariantly analytic.

However, similar to the flat four-dimensional case [14, 3] (see also [2]), one can introduce

a generalized, analyticity-preserving conjugation, Q(n) → Q̃(n), defined as

Q̃(n)(u+) ≡ Q̄(n)
(
u+ → ũ+

)
, ũ+ = iσ2 u

+ , (3.10)

with Q̄(n)(u+) the complex conjugate of Q(n). Its fundamental property is

D̃+
α̂Q

(n) = (−1)ǫ(Q
(n)) D+α̂Q̃(n) . (3.11)

One can see that
˜̃
Q(n) = (−1)nQ(n), and therefore real supermultiplets can be consistently

defined when n is even. In what follows, Q̃(n) will be called the smile-conjugate of Q(n).

Examples of projective supermultiplets are given in [1], and the interested reader is

referred to that paper for more details.

It follows from (2.15b) that S++ is a projective superfield of weight two,

D+
α̂S

++ = 0 . (3.12)

3.2 Locally supersymmetric action

Let L++ be a real projective multiplet of weight two. Associated with L++ is the following

functional

S(L++) =
1

6π

∮
(u+du+)

∫
d5xd8θ E

L++

(S++)2
, E−1 = Ber (E

Â
M̂ ) . (3.13)

7This is a generalization of the Sohnius off-shell formulation for hypermultiplet [31].
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We are going to show that S defines a locally supersymmetric action principle. This

functional is obviously invariant under projective re-scalings u+
i → c u+

i . Moreover, it

turns out to be invariant under infinitesimal gauge transformations (2.5) and (3.6). To

prove the invariance under arbitrary supergravity gauge transformations, we first point

out that Q(−2) := L++/(S++)2 is a projective multiplet of weight −2, since both L++ and

S++ are projective multiplet of weight +2. For Q(−2) the second line in (3.6) implies

KijJij Q
(−2) = −

1

(u+u−)
D−−

(
K++Q(−2)

)
. (3.14)

Next, since K++Q(−2) has weight zero, it is easy to see

(u+du+)KijJij Q
(−2) = −dt

d

dt
Q(−2) , (3.15)

with t the evolution parameter along the integration contour in (3.13). Since the inte-

gration contour is closed, the SU(2)-part of the transformation (3.6) does not contribute

to the variation of the action (3.13). To complete the proof, it remains to take into the

account the fact that Q(−2) is a Lorentz scalar.

Introduce the following fourth-order operator8

∆(+4) = (D+)4 −
5

12
iS++ (D+)2 + 3(S++)2 , (3.16)

where

(D+)4 := −
1

96
εα̂β̂γ̂δ̂D+

α̂D
+

β̂
D+

γ̂ D
+

δ̂
, (D+)2 := D+α̂D+

α̂ . (3.17)

Its crucial property is that the superfield Q(n) defined by

Q(n)(z, u+) := ∆(+4)U (n−4)(z, u+) , (3.18)

is a weight-n projective multiplet,

D+
α̂Q

(n) = 0 , (3.19)

for any unconstrained scalar superfield U (n−4)(z, u+) that lives on M5|8, is holomorphic

with respect to the isotwistor variables u+
i on an open domain of C2 \ {0}, and is charac-

terized by the following conditions:

(i) it is a homogeneous function of u+ of degree n− 4, that is,

U (n−4)(z, c u+) = cn−4 U (n−4)(z, u+) , c ∈ C∗ ; (3.20)

(iii) infinitesimal gauge transformations (2.5) act on U (n−4) as follows:

δU (n−4) =
(
KĈD

Ĉ
+KijJij

)
U (n−4) ,

KijJij U
(n−4) = −

1

(u+u−)

(
K++D−− − (n− 4)K+−

)
U (n−4) . (3.21)

8This operator was introduced in the case of 5D N = 1 anti-de Sitter supersymmetry in [2].
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We will call U (n−4)(z, c u+) a projective prepotential for Q(n).

The fourth-order operator (3.16) is analogous to the chiral projector in 4D N = 1

supergravity [32].

Let U (−2) be a projective prepotential for the Lagrangian L++ in (3.13). Representing

U (−2) =
1

3(S++)2

{
L++ − (D+)4U (−2) +

5

12
iS++ (D+)2U (−2)

}
, (3.22)

we obtain

1

2π

∮
(u+du+)

∫
d5xd8θ E U (−2) =

1

6π

∮
(u+du+)

∫
d5xd8θ E

L++

(S++)2
. (3.23)

One can see that the derivative terms in (3.22) do not contribute to the integral in (3.23),

as a consequence of the anti-commutation relations (2.12a)–(2.12c).

Our action (3.13) can be compared with the chiral action in 4D N = 1 supergravity [32,

33] (see also [23, 24] for reviews).

In the case of flat superspace, one can not make use of (3.23). Instead, here one can

apply the following relations

1

2π

∮
(u+du+)

∫
d5xd8θ U (−2) =

1

2π

∮
(u+du+)

(u+u−)4

∫
d5x (D−)4(D+)4U (−2)

∣∣∣
θ=0

=
1

2π

∮
(u+du+)

(u+u−)4

∫
d5x (D−)4L++

∣∣∣
θ=0

, (3.24)

with L++ := (D+)4U (−2) the flat-superspace Lagrangan. Here

(D−)4 := −
1

96
εα̂β̂γ̂δ̂D−

α̂D
−

β̂
D−

γ̂ D
−

δ̂
, D−

α̂ := u−i D
i
α̂ . (3.25)

The expression in the second line of (3.24) is the rigid supersymmetric action in 5D

N = 1 projective superspace [29]. The latter is a natural generalization of the 4D

N = 2 projective-superspace action originally given in [3] and reformulated in a projective-

invariant form in [34]. This action can be seen to be invariant under arbitrary transforma-

tions of the form:

(ui
− , ui

+) → (ui
− , ui

+)R , R =

(
a 0

b c

)
∈ GL(2,C) . (3.26)

The same invariance obviously holds for the curved-superspace action (3.13), for it is ex-

plicitly independent of u−.

Projective invariance (3.26) is an obvious property of the manifestly locally supersym-

metric action (3.13). As shown in section 5, it becomes a powerful constructive principle

when one is interested in reducing the action to components in the Wess-Zumino gauge.

4. Wess-Zumino gauge

In this section we elaborate the Wess-Zumino gauge for the 5D minimal supergravity mul-

tiplet, which was used in [1]. Our consideration will be similar to that originally given,
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many years ago, for 4D N = 1 supergravity [32, 35, 36] and then presented in a universally

applicable form in [23].

Given a superfield U(z) = U(x, θ), it is standard to denote as U | its θ-independent

component, U | := U(x, θ = 0). The Wess-Zumino (WZ) gauge for 5D N = 1 supergravity

is defined by

Dâ

∣∣ = ∇â + Ψâ
γ̂
k(x)Dk

γ̂

∣∣+ φâ
kl(x)Jkl + Vâ(x)Z , Di

α̂

∣∣ =
∂

∂θα̂
i

. (4.1)

Here ∇â denotes the space-time covariant derivatives,

∇â = eâ + ωâ , eâ = eâ
m̂(x) ∂m̂ , ωâ =

1

2
ωâ

b̂ĉ(x)M
b̂ĉ

= ωâ
β̂γ̂(x)M

β̂γ̂
, (4.2)

with eâ
m̂ the component inverse vielbein, and ωâ

b̂ĉ the Lorentz connection. The operators

∇â obey commutation relations of the form

[
∇â,∇b̂

]
= T

âb̂
ĉ(x)∇ĉ +

1

2
R

âb̂
ĉd̂(x)M

ĉd̂
, (4.3)

with T
âb̂

ĉ the torsion, and R
âb̂

ĉd̂ the curvature. Next, Ψâ
γ̂
k is the component gravitino,

while φâ
kl = Φâ

kl| and Vâ = Vâ| are the component SU(2) and central-charge gauge fields,

respectively. In addition to the geometric fields present in (4.1), the supergravity multiplet

includes some additional component fields which can be chosen as follows: Sij

∣∣, N
âb̂

∣∣,
Dj

α̂Sij

∣∣ and Dα̂iDj
α̂Sij

∣∣. All these fields, which survive in the WZ gauge, constitute the 5D

minimal supergravity multiplet [20].

Making use of (4.1) one can readily obtain

[Dâ,Db̂
]
∣∣ = [∇â,∇b̂

] − 2Ψ[â
γ̂
k [D

b̂],D
k
γ̂ ]
∣∣+ Ψâ

γ̂
kΨ

b̂
δ̂
l {D

k
γ̂ ,D

l

δ̂
}
∣∣+ 2(∇[âVb̂])Z

+2
(
∇[âΨb̂]

γ̂
k − φ[âk

lΨ
b̂]

γ̂
l

)
Dk

γ̂

∣∣+ 2
(
∇[âφb̂]

kl + φ[â
k
jφb̂]

jl
)
Jkl . (4.4)

This relation can be simplified considerably by evaluating the (anti-)commutators [Dâ,Db̂
],

[D
b̂
,Dk

γ̂ ] and {Dk
γ̂ ,D

l

δ̂
} with the aid of (2.12a)–(2.12c). As a result, eq. (4.4) can be seen to

be equivalent to the following relations:

T
âb̂

ĉ = −2iΨâ
γ̂k(Γĉ)

γ̂δ̂
Ψ

b̂
δ̂
k , (4.5a)

T
âb̂

γ̂
k

∣∣ =
i

2
Dγ̂

kFâb̂

∣∣ = 2∇[âΨb̂]
γ̂
k − 2φ[âk

jΨ
b̂]

γ̂
j − T

âb̂
ĉΨĉ

γ̂
k − 2Ψ[â

β̂
j Tb̂]

j

β̂

γ̂
k

∣∣ , (4.5b)

as well as

R
âb̂

ĉd̂
∣∣ = R

âb̂
ĉd̂ − 2Ψ[â

γ̂
kRb̂]

k
γ̂

ĉd̂
∣∣+ Ψâ

γ̂
kΨ

b̂
δ̂
lR

k
γ̂
l

δ̂

ĉd̂
∣∣ , (4.6a)

F
âb̂

∣∣ = 2(∇[âVb̂]) + 2iΨâ
γ̂kΨ

b̂
δ̂
kVγ̂δ̂

− 2iΨâ
γ̂
kΨ

b̂
k
γ̂ , (4.6b)

R
âb̂

ij
∣∣ = 2∇[âφb̂]

ij + 2φ[â
i
kφb̂]

kj

−2Ψ[â
γ̂
kRb̂]

k
γ̂

ij
∣∣+ Ψâ

γ̂
kΨ

b̂
δ̂
lR

k
γ̂

l

δ̂

ij
∣∣+ 2iΨâ

γ̂kΨ
b̂
δ̂
kφγ̂δ̂

ij . (4.6c)
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Eq. (4.5a) determines the space-time torsion in terms of the gravitino. Eq. (4.5b) consti-

tutes a locally supersymmetric version of the gravitino field strength. Finally, eqs. (4.6a)–

(4.6c) express the leading components of the superspace curvature tensors in terms of the

component fields. Equations (4.5a) and (4.5b) will frequently be used in section 5. The

space-time torsion (4.5a) will be especially important for the considerations in section 5,

for it occurs in the rule for integration by parts:
∫

d5x e∇âU
â =

∫
d5x eT

âb̂
b̂ U â , e−1 = det

(
eâ

m̂
)
. (4.7)

In the WZ gauge, the supergravity gauge fredom (2.5) reduces to those transformations

which preserve the WZ gauge. This is equivalent to the requirement

0 = δDi
α̂

∣∣ = −
[
K β̂

j D
j

β̂
+K b̂D

b̂
+K β̂γ̂M

β̂γ̂
+KjkJjk + τZ,Di

α̂

]∣∣∣ . (4.8)

It implies the following restrictions on the transformation parameters:

Di
α̂K

β̂
j

∣∣ = K ĉ
∣∣Tĉ

i
α̂

β̂
j

∣∣+ δi
j Kα̂

β̂
∣∣+ δβ̂

α̂K
i
j

∣∣ , Di
α̂K

b̂
∣∣ = −2i (Γb̂)α̂γ̂ K

γ̂i
∣∣ ,

Di
α̂K

β̂γ̂
∣∣ = KĈ

∣∣R
Ĉ

i
α̂

β̂γ̂
∣∣ , Di

α̂K
jk
∣∣ = KĈ

∣∣R
Ĉ

i
α̂

jk
∣∣ , Di

α̂τ
∣∣ = −2iKi

α̂

∣∣ . (4.9)

In the WZ gauge, the transformation laws of the gauge fields can be derived from

δDâ

∣∣ = δ∇â + δΨâ
β̂
j D

j

β̂

∣∣+ δφâ
klJkl + δVâZ

= −
[
KB̂D

B̂
+K β̂γ̂M

β̂γ̂
+KjkJjk + τZ,Dâ

]∣∣∣ . (4.10)

Some computations lead to

δeâ
m̂ =

(
∇âK

b̂
∣∣− 2iΨâ

α̂
k (Γb̂)

α̂β̂
K β̂k

∣∣−Kâ
b̂
∣∣
)
e
b̂
m̂ , (4.11a)

δωâ
β̂γ̂ =

(
∇âK

b̂
∣∣− 2iΨâ

α̂
k (Γb̂)

α̂δ̂
K δ̂k

∣∣−Kâ
b̂
∣∣
)
ω

b̂
β̂γ̂ + ∇âK

γ̂δ̂
∣∣

+Ψâ
β̂
jK

Ĉ
∣∣R

Ĉ
j

β̂

γ̂δ̂
∣∣−KB̂

∣∣R
B̂â

γ̂δ̂
∣∣ , (4.11b)

δΨâ
β̂
j = ∇âK

β̂
j

∣∣− φâj
kK β̂

k

∣∣− 2iΨâ
γ̂
j (Γĉ)

γ̂δ̂
Ψĉ

β̂
kK

δ̂k
∣∣+K γ̂

k

∣∣Tâ
k
γ̂
β̂
j

∣∣+ ∇âK
ĉ
∣∣Ψĉ

β̂
j

+Ψâ
γ̂
kK

ĉ
∣∣Tĉ

k
γ̂
β̂
j

∣∣−K ĉ
∣∣Tĉâ

β̂
j

∣∣−Kâ
ĉ
∣∣Ψĉ

β̂
j + Ψâ

γ̂
jKγ̂

β̂
∣∣+ Ψâ

γ̂
kK

k
j

∣∣ , (4.11c)

δφâ
jk =

(
∇âK

b̂
∣∣− 2iΨâ

β̂
l (Γb̂)

β̂γ̂
K γ̂l

∣∣−Kâ
b̂
∣∣
)
φ

b̂
jk + ∇âK

jk
∣∣+ 2φâ

(j
lK

k)l
∣∣

+K β̂
l

∣∣Râ
l

β̂

jk
∣∣+K b̂

∣∣R
âb̂

jk
∣∣+ Ψâ

β̂
l K

Ĉ
∣∣R

Ĉ
l

β̂

jk
∣∣ , (4.11d)

δVâ =
(
∇âK

b̂
∣∣− 2iΨâ

β̂
j (Γb̂)

β̂γ̂
K γ̂j

∣∣−Kâ
b̂
∣∣
)
V

b̂
+ ∇âτ

∣∣+K b̂
∣∣F

âb̂

∣∣− 2iΨâ
β̂
jK

j

β̂

∣∣ . (4.11e)

5. Action principle in the Wess-Zumino gauge

Our goal in this section is to reduce the locally supersymmetric action (3.13) to components

in the WZ gauge. Using considerations based on eqs. (3.23), (3.24), (4.1) and E| = e, one

can argue that in the WZ gauge it holds

S(L++) = S0 + . . . , S0 =
1

2π

∮
(u+du+)

(u+u−)4

∫
d5x e (D−)4L++(z, u+)

∣∣∣ , (5.1)
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where

D−
α̂ := u−i D

i
α̂ , (D−)4 := −

1

96
εα̂β̂γ̂δ̂D−

α̂D
−

β̂
D−

γ̂ D
−

δ̂
, (5.2)

and the dots in the expression for S(L++) in (5.1) denote all the terms with at most three

spinor derivatives hitting L++.

By construction, the action (3.13) is invariant under arbitrary projective transforma-

tions (3.26). It is remarkable that the requirement of projective invariance allows one to

uniquely restore the action in the WZ gauge by making use of S0, as given in (5.1), as the

only input. Let us start by presenting the result of explicit calculations announced in [1]:

S(L++) =
1

2π

∮

γ

(u+du+)

(u+u−)4

∫
d5xe

[
(D−)4+

i

4
Ψα̂β̂γ̂−D−

γ̂ D
−
α̂D

−

β̂
−

25

24
iS−−(D−)2

−2(Σâb̂)
β̂

γ̂Ψâ
β̂−Ψ

b̂
δ̂−D[γ̂

−D
δ̂]
−−

i

4
φα̂β̂−−D−

α̂D
−

β̂
+4(Σâb̂)α̂γ̂φ[â

−−Ψ
b̂]

γ̂−D−
α̂

−4Ψα̂β̂−

β̂
S−−D−

α̂ + 2i εâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

Ψâ
α̂−Ψ

b̂
β̂−Ψĉ

γ̂−D−
γ̂ + 18S−−S−−

−6i εâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

Ψâ
α̂−Ψ

b̂
β̂−φĉ

−−+18i (Σâb̂)
α̂β̂

Ψâ
α̂−Ψ

b̂
β̂−S−−

]
L++

∣∣∣, (5.3)

where (D−)2 := Dα̂−D−
α̂ , S−− := Siju−i u

−
j , φâ

−− := φâ
iju−i u

−
j and Ψâ

β̂− := Ψâ
β̂iu−i .

The remainder of this section is devoted to the derivation of (5.3). Conceptually, our

approach below is quite simple. We start by computing the variation of S0 (5.1) under an

infinitesimal projective transformation (3.26), and then iteratively add new terms to the

action in order to cancel out all non-zero contributions to the variation, insuring projective

invariance in the end. Technically, the calculation turns out to be quite long.

In the following, we will use the condensed notation:

dµ++ :=
1

2π

(u+du+)

(u+u−)4
= −

1

2π

(
.

u
+
u+)

(u+u−)4
dt , (5.4)

where we have denoted
.

f := df(t)/dt, for a function f(t). Here t is the time parameter

along the closed integration contour γ = {u+
i (t)} in the isotwistor space which occurs

in (5.1). In the integrand of (5.1), the isotwistor u−i is chosen to be constant (i.e. time-

independent) and subject to the condition that u+(t) and u− form a linearly independent

basis at each point of the contour γ, that is (u+u−) 6= 0.

Concerning the projective transformations (3.26), it is obvious that S0 (5.1) is invariant

under arbitrary scale transformations u+
i (t) → c(t)u+

i (t), with c(t) 6= 0. The iterative

contributions to S should be chosen to automatically respect this invariance. It is thus

only necessary to analyse projective transformations of u− of the form

u−i → ũ−i = a(t)u−i + b(t)u+
i (t) , a(t) 6= 0 . (5.5)

Since both u− and ũ− should be time independent, the coefficients should obey the

equations:

.

a = b
(
.

u
+
u+)

(u+u−)
,

.

b = −b
(
.

u
+
u−)

(u+u−)
. (5.6)
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As is obvious, the functional S0 (5.1) is invariant under arbitrary scale transformations

u−i → a(t)u−i , with a 6= 0. The other contributions to S, which we are going to determine,

should be chosen to automatically respect this invariance. Therefore, it only remains to

analyse infinitesimal transformations of the form δu−i = b(t)u+
i , with b(t) obeying the

differential equation (5.6). This transformation induces the following variation of S0:

δS0 =

∮
dµ++

∫
d5x e

[
δ(D−)4

]
L++

∣∣∣

= −
εα̂β̂γ̂δ̂

96

∮
dµ++ b

∫
d5x e

[
3D−

α̂D
−

β̂
{D+

γ̂ ,D
−

δ̂
} + 2D−

α̂ {D
+

β̂
,D−

γ̂ }D
−

δ̂

+ {D+
α̂ ,D

−

β̂
}D−

γ̂ D
−

δ̂

]
L++

∣∣∣ . (5.7)

First of all, this variation has to be transformed.

Using the completeness relation

(u+u−) δi
j = u+iu−j − u−iu+

j , (5.8)

the (anti-)commutation relations (2.4), (2.12a) and (2.12b) can be seen to imply

[Jkl,D
±
α̂ ] =

1

(u+u−)

[
u±(ku

−
l)D

+
α̂ − u±(ku

+
l)D

−
α̂

]
, (5.9a)

{D+
α̂ ,D

−

β̂
} = 2i(u+u−)D

α̂β̂
+R+

α̂
−

β̂

klJkl +R+
α̂
−

β̂

γ̂δ̂M
γ̂δ̂

+ 2i(u+u−)ε
α̂β̂
Z , (5.9b)

[D
α̂β̂
,D±

γ̂ ] =
1

(u+u−)
T

α̂β̂
±
γ̂

δ̂−D+

δ̂
−

1

(u+u−)
T

α̂β̂
±
γ̂

δ̂+D−

δ̂
+R

α̂β̂
±
γ̂

lpJlp+R
α̂β̂

±
γ̂

ρ̂τ̂Mρ̂τ̂ . (5.9c)

Here we have introduced the following definitions:

R+
α̂
−

β̂

γ̂δ̂ := Ri
α̂

j

β̂

γ̂δ̂u+
i u

−
j , R+

α̂
−

β̂

kl := Ri
α̂

j

β̂

klu+
i u

−
j ,

Tâ
±
γ̂

δ̂± := Tâ
k
γ̂

δ̂lu±k u
±
l , Râ

±
γ̂

ρ̂τ̂ := Râ
k
γ̂

ρ̂τ̂u±k , Râ
±
γ̂

lp := Râ
k
γ̂

lpu±k , (5.10)

where the torsion and curvature tensors are given explicitly in section 2. In what follows,

we often change the basis in the space of iso-tensors by the rule: Ai → A± := Aiu±i .

Let us return to the variation (5.7). We evaluate the anticommutators on the right

of (5.7) with the aid of (5.9b). After that, all vector covariant derivative should be moved

to the left by making use of (5.9c), and all SU(2)-generators should be moved to the right

using (5.9a). If such transformations produce a spinor covariant derivative D+
α̂ , it should

be pushed to the right until it hits L++, and the latter vanishes due to the analyticity of
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the Lagrangian, D+
α̂L

++ = 0. We end up with

δS0 = −
εα̂β̂γ̂δ̂

96

∮
dµ++ b

∫
d5x e

[
12i(u+u−)D

α̂β̂
D−

γ̂ D
−

δ̂
+ 20(u+u−)T

α̂β̂
−
γ̂

ρ̂−D
ρ̂δ̂

+2iR+
α̂

−

β̂

−−D
γ̂δ̂

+16iT
α̂β̂

−
γ̂

ρ̂+D−
[ρ̂D

−

δ̂]
−

4

(u+u−)
R+

α̂
−

β̂

+−D−
γ̂ D

−

δ̂

−4R+
α̂

−

β̂
γ̂
τ̂D−

[δ̂
D−

τ̂ ]+10iR
α̂β̂

−
γ̂

+−D−

δ̂
−10i(u+u−)R

α̂β̂
−
γ̂ δ̂

τ̂D−
τ̂

+6i(D−
α̂ Tβ̂γ̂

−

δ̂

ρ̂+)D−
ρ̂ −

2

(u+u−)
(D−

α̂R
+

β̂

−
γ̂

+−)D−

δ̂
+2(D−

α̂R
+

β̂

−
γ̂ δ̂

τ̂ )D−
τ̂

+

(
6R+

α̂
−

β̂

klD−
γ̂ D

−

δ̂
+8(D−

α̂R
+

β̂

−
γ̂

kl)D−

δ̂
−16i(u+u−)R

α̂β̂
−
γ̂

klD−

δ̂
+3(D−

α̂D
−

β̂
R+

γ̂
−

δ̂

kl)

− 6i(u+u−)(D−
α̂Rβ̂γ̂

−

δ̂

kl)−10iT
α̂β̂

−
γ̂

ρ̂−R+
ρ̂

−

δ̂

kl+2iT
α̂β̂

−
γ̂

ρ̂+R−
ρ̂

−

δ̂

kl

+
1

(u+u−)
R+

α̂
−

β̂

−−R+
γ̂

−

δ̂

kl−R+
α̂

−

β̂
γ̂
ρ̂R−

ρ̂
−

δ̂

kl

)
Jkl

]
L++ . (5.11)

Let us analyze the contributions to the right-hand side of (5.11), which are proportional

to the SU(2)-generators Jkl. It is important to note that all the coefficients in front of Jkl

are homogeneous functions of degree 1 in the variables u+
i , and of degree 3 in u−i . This

follows from the fact that such terms come from the variation δ(D−)4 which results in

replacing one of the four isotwistors (u−)’s by (b u+). Another piece of useful information

is the fact that the lagrangian L++ is a projective superfield of weight 2, and hence

JklL
++ = −

1

(u+u−)

(
u+

(ku
+
l)D

−− − 2u+
(ku

−
l)

)
L++ , (5.12a)

d

dt
L++ = 2

(
.

u
+
u−)

(u+u−)
L++ −

(
.

u
+
u+)

(u+u−)
D−−L++ , (5.12b)

(
.

u
+
u+)JklL

++ = u+
(ku

+
l)

d

dt
L++ − 2

(
.

u
+
u−)

(u+u−)
u+

(ku
+
l)L

++ + 2
(
.

u
+
u+)

(u+u−)
u+

(ku
−
l)L

++ . (5.12c)

The latter result leads to

(
.

u
+
u+)

(u+u−)4
b JklL

++ =
d

dt

[
b
u+

(ku
+
l)

(u+u−)4
L++

]
+4b

(
.

u
+
u+)

(u+u−)5
u+

(k
u−

l)
L+++b

(
.

u
+
u−)

(u+u−)5
u+

(k
u+

l)
L++ .

(5.13)

This implies that, given an operator O(kl) = O(lk) which is an homogenous function of

degree 1 in u+
i (as in our case), the following equation holds

∮
dµ++ bO(kl)JklL

++ =

∮
dµ++

{
4bO+−

(u+u−)
L++ +

b u+
k u

+
l

(u+u−)

(
D−−O(kl)

)
L++

}
. (5.14)

Now, it remains to make use of the explicit expressions for the torsion and curvature

tensors, see eqs. (2.12a), (2.12c), as well as to notice the relations

D−
α̂S

+− = −
(u+u−)

4

(
3F−

α̂ + N−
α̂

)
, Dα̂−Fα̂

β̂ =
5

2
F β̂− , Dα̂−Nα̂

β̂ =
5

2
N β̂− , (5.15)

– 21 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
4

After some computations, one obtains

δS0 =

∮
dµ++ b

∫
d5x e

[
i(u+u−)

4
Dα̂β̂D−

α̂D
−

β̂
+

25i

12
S+−(D−)2

− 5i(u+u−)F α̂−D−
α̂ − 22S−−S+−

]
L++

∣∣∣ . (5.16)

An important remark is in order. The original variation δS0 contained numerous con-

tributions proportional to (u+u−)N α̂−D−
α̂ . All such terms have cancelled out. Although

at first sight such non-trivial cancellations may appear miraculous, there is a simple ex-

planation for that. The point is that such contributions to the projective variation of S

are impossible to cancel by means of adding some “counterterms” to the action. Complete

cancellation is the only option compatible with projective invariance.

To cancel out the second and fourth terms in (5.16), we add to S0 the following

functional:

S1 =

∮
dµ++

∫
d5x e

[
−

25i

24
S−−(D−)2 + 18S−−S−−

]
L++

∣∣∣ , (5.17)

Evaluating the projective variation of S0 + S1 gives

δ
(
S0 + S1

)
=

∮
dµ++ b

∫
d5x e

[
i(u+u−)

4
Dα̂β̂D−

α̂D
−

β̂
− 5i(u+u−)F α̂−D−

α̂

]
L++

∣∣∣ . (5.18)

To simplify the last variation, we have to start using the relations that hold in WZ

gauge of section 4. In particular, making use of (4.1) gives

δ
(
S0 + S1

)
=

∮
dµ++ b

∫
d5x e

[
i(u+u−)

4
∇α̂β̂D−

α̂D
−

β̂
+

i

4
Ψα̂β̂γ̂−[D+

γ̂ ,D
−
α̂D

−

β̂
]

−
i

4
Ψα̂β̂γ̂+D−

γ̂ D
−
α̂D

−

β̂
+

i

4
φα̂β̂−−{D+

α̂ ,D
−

β̂
}+

i

2
φα̂β̂+−D−

α̂D
−

β̂
−5i(u+u−)F α̂−D−

α̂

]
L++

∣∣∣.(5.19)

Here, the operators proportional to the connection φ can be seen to cancel out by adding

the functional

S2 =

∮
dµ++

∫
d5x e

[
−

i

4
φα̂β̂−−D−

α̂D
−

β̂

]
L++

∣∣∣ . (5.20)

Futhermore, in order to cancel out the first term in the second line of (5.19), it is necessary

to add one more “counterterm”:

S3 =

∮
dµ++

∫
d5x e

[
i

4
Ψα̂β̂γ̂−D−

γ̂ D
−
α̂D

−

β̂

]
L++

∣∣∣ . (5.21)

Now, the projective variation of S0 + S1 + S2 + S3 is

δ
(
S0 + S1 + S2 + S3

)
=

∮
dµ++ b

∫
d5x e

[
i(u+u−)

4
∇α̂β̂D−

α̂D
−

β̂

+
i

2
Ψα̂β̂γ̂−[D+

γ̂ ,D
−
α̂D

−

β̂
] +

i

4
Ψα̂β̂γ̂−D−

γ̂ {D
+
α̂ ,D

−

β̂
} − 5i(u+u−)F α̂−D−

α̂

]
L++

∣∣∣ . (5.22)
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To simplify the variation obtained, we compute the (anti)commutators in (5.22). In

this way, we will produce terms with vector covariant derivatives, Dâ, and also terms with

the Lorentz and SU(2)-generators. Then we should systematically move all the covariant

derivatives Dâ to the left, with the aid of the algebra of covariant derivatives, and finally

make use of the WZ gauge relation (4.1). Similarly, we should systematically move all the

generators to the right using (5.14) and M
α̂β̂

L++ = 0. As a result, eq. (5.22) turns into

δ
(
S0 + S1 + S2 + S3

)
=

∮
dµ++ b

∫
d5x e

[
i(u+u−)

4
(Γâ)γ̂δ̂∇âD

−
γ̂ D

−

δ̂

−4(u+u−)(Σâb̂)
β̂

γ̂∇[âΨb̂]
β̂−D−

γ̂ +4(u+u−)(Σâb̂)
β̂

γ̂(∇[âΨb̂]
β̂−)D−

γ̂ −12(Σâb̂)α̂γ̂φ[â
+−Ψ

b̂]
γ̂−D−

α̂

−4(Σâb̂)γ̂
β̂Ψâ

γ̂−Ψ
b̂
δ̂+D−

[δ̂
D−

β̂]
+4(Σâb̂)γ̂

β̂Ψâ
γ̂−Ψ

b̂
δ̂−{D+

δ̂
,D−

β̂
}−2(Σâb̂)γ̂

β̂Ψâ
γ̂−Ψ

b̂
δ̂+{D−

δ̂
,D−

β̂
}

+ Ψα̂β̂γ̂−

(
7i

2(u+u−)
R+

γ̂
−
α̂

+−D−

β̂
+

i

(u+u−)
R+

α̂
−

β̂

+−D−
γ̂ +

i

(u+u−)
R−

γ̂
−
α̂

++D−

β̂

+
i

4(u+u−)
R−

α̂
−

β̂

++D−
γ̂ +

i

2
R+

γ̂
−
α̂ β̂

ρ̂D−
ρ̂ + T

γ̂β̂
−
α̂

δ̂+D−

δ̂
−

1

2
T

α̂β̂
−
γ̂

δ̂+D−

δ̂

−
2i

(u+u−)
(D−

α̂R
+
γ̂

−

β̂

+−) −
i

2(u+u−)
(D−

α̂R
−
γ̂

−

β̂

++) +
i

(u+u−)
(D−

γ̂ R
+
α̂

−

β̂

+−)

+
i

4(u+u−)
(D−

γ̂ R
−
α̂

−

β̂

++) − 4R
γ̂β̂

−
α̂

+− + 2R
α̂β̂

−
γ̂

+−

)

−5i(u+u−)F α̂−D−
α̂

]
L++

∣∣∣ . (5.23)

In the variation obtained, the first three terms can be simplified by using some relations

that hold in the WZ gauge. In particular, the first two terms in (5.23) are of the form

∇âU
â, for some U â, and can be simplified by using the rule for integration by parts (4.7).

Furthermore, the third term in (5.23) can be transformed to the form:

(Σâb̂)α̂γ̂

(
∇[âΨb̂]

γ̂−
)

=
5i

4
F α̂− −

1

(u+u−)
(Σâb̂)α̂γ̂φ[â

−−Ψ
b̂]

γ̂+ +
1

(u+u−)
(Σâb̂)α̂γ̂φ[â

+−Ψ
b̂]

γ̂−

+
1

2
(Σâb̂)α̂γ̂Tâb̂

ĉΨĉ
γ̂− −

1

(u+u−)
(Σâb̂)α̂γ̂Ψ[â

β̂+T
b̂]

−

β̂

γ̂−

+
1

(u+u−)
(Σâb̂)α̂γ̂Ψ[â

β̂−T
b̂]

+

β̂

γ̂− , (5.24)

as a consequence of the identity (4.5b). Here the space-time torsion is given by eq. (4.5a)

which can be equivalently rewritten as follows:

T
âb̂

ĉ =
4i

(u+u−)
(Γĉ)

γ̂δ̂
Ψ[â

γ̂−Ψ
b̂]

δ̂+ . (5.25)
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Further calculations lead to

δ
(
S0 + S1 + S2 + S3

)
=

=

∮
dµ++ b

∫
d5x e

[
2(Σâb̂)

β̂
γ̂Ψ[â

β̂+Ψ
b̂]

δ̂−D−
[γ̂D

−

δ̂]
+ 2(Σâb̂)

β̂
γ̂Ψ[â

β̂−Ψ
b̂]

δ̂+D−
[γ̂D

−

δ̂]

+4(Σâb̂)
β̂

γ̂Ψ[â
β̂−Ψ

b̂]
δ̂−{D+

δ̂
,D−

γ̂ } − 2(Σâb̂)
β̂

γ̂Ψ[â
β̂−Ψ

b̂]
δ̂+{D−

δ̂
,D−

γ̂ }

+4Ψα̂β̂+

β̂
S−−D−

α̂ + 8Ψα̂β̂−

β̂
S+−D−

α̂ − 4(Σâb̂)α̂γ̂φ[â
−−Ψ

b̂]
γ̂+D−

α̂ − 8(Σâb̂)α̂γ̂φ[â
+−Ψ

b̂]
γ̂−D−

α̂

+16i(Σâb̂)
α̂β̂

(Γĉ)
γ̂δ̂

Ψ[â
γ̂−Ψĉ]

δ̂+Ψ
b̂
α̂−Dβ̂− − 8i(Σâb̂)

α̂β̂
(Γĉ)

γ̂δ̂
Ψ[â

γ̂−Ψ
b̂]

δ̂+Ψĉ
α̂−Dβ̂−

+9(u+u−)(Γâ)β̂γ̂Ψâ
α̂−Ξ

β̂α̂γ̂
− − 18(u+u−)(Γâ)α̂

γ̂Ψâ
α̂−Fγ̂

−

]
L++

∣∣∣ . (5.26)

Note that the term −5i(u+u−)F α̂−D−
α̂ in (5.23), which cannot be consistently produced

by the variation of any Lagrangian, has cancelled out at this point.

The terms in the fourth line of (5.26) can be seen to cancel out by adding to the action

the following functional:

S4 =

∮
dµ++

∫
d5x e

[
4(Σâb̂)α̂γ̂φ[â

−−Ψ
b̂]

γ̂−D−
α̂ − 4Ψα̂β̂−

β̂
S−−D−

α̂

]
L++

∣∣∣ . (5.27)

In addition, in order to cancel out the two terms quadratic in spinor derivatives D− in the

second line of (5.26), one has to add to S one more “counterterm”

S5 =

∮
dµ++

∫
d5x e

[
− 2(Σâb̂)

β̂
γ̂Ψâ

β̂−Ψ
b̂
δ̂−D−

[γ̂D
−

δ̂]

]
L++

∣∣∣ . (5.28)

At this point, we can simplify δ
(
S0+S1+S2+S3+S4+S5

)
by computing the remaining

anticommutators and then using the same strategy as before, that is: (i) systematically

move all the covariant derivatives Dâ to the left , using the algebra of covariant derivatives,

and then we apply the relation (4.1); (ii) systematically move to the right all the generators

using (5.14) and M
α̂β̂

L++ = 0. Such calculations give

δ
(
S0 + S1 + S2 + S3 + S4 + S5

)
=

=

∮
dµ++ b

∫
d5x e

[
− 24i(u+u−)(Σâb̂)α̂γ̂Ψ[â

(α̂−Ψ
b̂]

β̂)−
(
F

β̂
γ̂ +N

β̂
γ̂ +

3

(u+u−)
δγ̂

β̂
S+−

)

+6i(u+u−)εâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

∇ĉΨ[â
(α̂−Ψ

b̂]
β̂)− + 12i(u+u−)εâb̂ĉm̂n̂(Σm̂n̂)

α̂β̂
Ψâ

α̂−(∇[b̂Ψĉ]
β̂−)

+24iεâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

Ψ[â
(α̂−Ψ

b̂]
β̂)−φĉ

+− − 6iεâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

Ψ[â
(α̂−Ψ

b̂]
β̂)−Ψĉ

γ̂+D−
γ̂

+16i(Σâb̂)
α̂β̂

(Γĉ)
γ̂δ̂

Ψ[â
γ̂−Ψĉ]

δ̂+Ψ
b̂
α̂−Dβ̂− − 8i(Σâb̂)

α̂β̂
(Γĉ)

γ̂δ̂
Ψ[â

γ̂−Ψ
b̂]

δ̂+Ψĉ
α̂−Dβ̂−

+9(u+u−)(Γâ)β̂γ̂Ψâ
α̂−Ξ

β̂α̂γ̂
− − 18(u+u−)(Γâ)α̂

γ̂Ψâ
α̂−Fγ̂

−

]
L++

∣∣∣ . (5.29)

– 24 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
4

Here the third line can be simplified by using the integration by parts (4.7) and the equation

∇[âΨb̂]
γ̂− =

i

4
Dγ̂−F

âb̂
+

2i

(u+u−)
(Γĉ)

γ̂δ̂
Ψ[â

γ̂−Ψ
b̂]

δ̂+Ψĉ
γ̂− +

1

(u+u−)
φ[â

+−Ψ
b̂]

γ̂−

−
1

(u+u−)
φ[â

−−Ψ
b̂]

γ̂+ −
1

(u+u−)
Ψ[â

β̂+T
b̂]

−

β̂

γ̂− +
1

(u+u−)
Ψ[â

β̂−T
b̂]

+

β̂

γ̂− , (5.30)

which follows from (4.5b).

After some computations, the variation becomes

δ
(
S0 + S1 + S2 + S3 + S4 + S5

)
=

=

∮
dµ++ b

∫
d5x e

[
− 36i(Σâb̂)

α̂β̂

(
Ψâ

α̂−Ψ
b̂
β̂−S+− + Ψâ

α̂+Ψ
b̂
β̂−S−−

)

+12iεâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

(
Ψâ

α̂−Ψ
b̂
β̂−φĉ

+− + Ψâ
α̂−Ψ

b̂
β̂+φĉ

−−
)

+24εâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

(Γd̂)
γ̂δ̂

(
Ψâ

α̂−Ψ
b̂
β̂−Ψ[d̂

γ̂−Ψĉ]
δ̂+ + Ψâ

α̂−Ψ
b̂
γ̂−Ψ

d̂
β̂−Ψĉ

δ̂+
)

−6iεâb̂ĉm̂n̂(Σm̂n̂)
α̂β̂

Ψ[â
(α̂−Ψ

b̂]
β̂)−Ψĉ

γ̂+D−
γ̂ + 16i(Σâb̂)

α̂β̂
(Γĉ)

γ̂δ̂
Ψ[â

γ̂−Ψĉ]
δ̂+Ψ

b̂
α̂−Dβ̂−

−8i(Σâb̂)
α̂β̂

(Γĉ)
γ̂δ̂

Ψ[â
γ̂−Ψ

b̂]
δ̂+Ψĉ

α̂−Dβ̂−

]
L++

∣∣∣ . (5.31)

To cancel out the expressions in the second and third lines of (5.31), we have to add to the

action the following functional:

S6 =

∮
dµ++

∫
d5x e

[
Ψâ

α̂−Ψ
b̂
β̂−
(
18i(Σâb̂)

α̂β̂
S−− − 6iεâb̂ĉm̂n̂(Σm̂n̂)

α̂β̂
φĉ

−−
)]

L++
∣∣∣ .

(5.32)

Now, let us turn our attention to the three gravitini in (5.31). For their analysis, we

need two auxiliary resuts. First, for any tensor A
âb̂ĉ

= −A
b̂âĉ

, it holds

(Σâb̂)
α̂β̂
A

âĉb̂
= −

3

2
(Σâb̂)

α̂β̂
A[âb̂ĉ] +

1

2
(Σâb̂)

α̂β̂
A

âb̂ĉ
, (5.33)

Given an antisymmetric tensor, Ad̂ê = −Aêd̂, it holds

ε
âb̂ĉd̂ê

(Γâ)
α̂β̂

(Σb̂ĉ)
γ̂δ̂
Ad̂ê = 4ε

α̂β̂
A

γ̂δ̂
− 4εα̂γ̂Aβ̂δ̂

− 4ε
α̂δ̂
A

β̂γ̂
+ 4ε

β̂γ̂
A

α̂δ̂
+ 4ε

β̂δ̂
Aα̂γ̂ . (5.34)

With the aid of these identities, the contributions proportional to three gravitini in (5.31)

can be seen to be equivalent to

−2i

∮
dµ++ b

∫
d5x e εâb̂ĉm̂n̂(Σm̂n̂)

α̂β̂

(
Ψâ

α̂−Ψ
b̂
β̂−Ψĉ

γ̂+ + 2Ψâ
α̂+Ψ

b̂
β̂−Ψĉ

γ̂−
)
D−

γ̂ L
++
∣∣∣ .

(5.35)

These terms identically are cancelled out against the projective variation of the functional

S7 = 2i

∮
dµ++

∫
d5x e εâb̂ĉm̂n̂(Σm̂n̂)

α̂β̂
Ψâ

α̂−Ψ
b̂
β̂−Ψĉ

γ̂−D−
γ̂ L++

∣∣∣ . (5.36)
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Finally, it can be seen that the terms with four gravitini in (5.31) cancel each other.

As a result, we obtain

δ
(
S0 + S1 + S2 + S3 + S4 + S5 + S6 + S7

)
= 0 . (5.37)

The action (5.3) has been proved to be projective invariant. There is no need to demon-

strate its invariance under the local supersymmetry transformations, since (5.3) is simply

the component form of the locally supersymmetric action (3.13) in the WZ gauge.

Various supergravity-matter systems correspond to different choices for L++. Explicit

examples of such dynamical systems are given in [1].
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A. 5D conventions

Our 5D notations and conventions correspond to [26]. The Minkowski metric is given by

ηm̂n̂ = diag{−1, 1, 1, 1, 1} (m̂, n̂ = 0, 1, 2, 3, 5). The 5D gamma-matrices Γm̂ = (Γm,Γ5),

with m = 0, 1, 2, 3, are defined by

{Γm̂ , Γn̂} = −2ηm̂n̂ 1 , (Γm̂)† = Γ0 Γm̂ Γ0 (A.1)

are chosen in accordance with

(Γm)α̂
β̂ =

(
0 (σm)

αβ̇

(σ̃m)α̇β 0

)
, (Γ5)α̂

β̂ =

(
−i δα

β 0

0 i δα̇
β̇

)
, (A.2)

such that Γ0Γ1Γ2Γ3Γ5 = 1. The charge conjugation matrix, C = (εα̂β̂), and its inverse,

C−1 = C† = (ε
α̂β̂

) are defined by

C Γm̂ C−1 = (Γm̂)T , εα̂β̂ =

(
εαβ 0

0 −ε
α̇β̇

)
, ε

α̂β̂
=

(
εαβ 0

0 −εα̇β̇

)
. (A.3)

The antisymmetric matrices εα̂β̂ and ε
α̂β̂

are used to raise and lower the four-component

spinor indices.

A Dirac spinor, Ψ = (Ψα̂), and its Dirac conjugate, Ψ̄ = (Ψ̄α̂) = Ψ† Γ0, look like

Ψα̂ =

(
ψα

φ̄α̇

)
, Ψ̄α̂ = (φα , ψ̄α̇) . (A.4)

One can now combine Ψ̄α̂ = (φα, ψ̄α̇) and Ψα̂ = εα̂β̂Ψ
β̂

= (ψα,−φ̄α̇) into a SU(2) doublet,

Ψα̂
i = (Ψα

i ,−Ψ̄α̇i) , (Ψα
i )∗ = Ψ̄α̇i , i = 1, 2 , (A.5)
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with Ψα
1 = φα and Ψα

2 = ψα. It is understood that the SU(2) indices are raised and lowered

by εij and εij , ε
12 = ε21 = 1, in the standard fashion: Ψα̂i = εijΨα̂

j . The Dirac spinor

Ψi = (Ψi
α̂) satisfies the pseudo-Majorana condition Ψ̄i

T = CΨi. This will be concisely

represented as

(Ψi
α̂)∗ = Ψα̂

i . (A.6)

With the definition Σm̂n̂ = −Σn̂m̂ = −1
4 [Γm̂,Γn̂], the matrices {1,Γm̂,Σm̂n̂} form a

basis in the space of 4 × 4 matrices. The matrices ε
α̂β̂

and (Γm̂)
α̂β̂

are antisymmetric,

εα̂β̂ (Γm̂)
α̂β̂

= 0, while the matrices (Σm̂n̂)
α̂β̂

are symmetric. Note that any 4 × 4 matrix

B = (Bα̂
β̂) can be represented in the form:

B = B 1+Bm̂ Γm̂ +
1

2
Bm̂n̂ Σm̂n̂ ,

B =
1

4
tr B , Bm̂ = −

1

4
tr
(
Γm̂ B

)
, Bm̂n̂ = −tr

(
Σm̂n̂ B

)
. (A.7)

Given a 5-vector V m̂ and an antisymmetric tensor F m̂n̂ = −F n̂m̂, we can equivalently

represent them as the bi-spinors V = V m̂ Γm̂ and F = 1
2F

m̂n̂ Σm̂n̂ with the following

symmetry properties

V
α̂β̂

= −V
β̂α̂
, εα̂β̂ V

α̂β̂
= 0 , F

α̂β̂
= F

β̂α̂
. (A.8)

The two equivalent descriptions Vm̂ ↔ V
α̂β̂

and Fm̂n̂ ↔ F
α̂β̂

are explicitly described as

follows:

V
α̂β̂

= V m̂ (Γm̂)
α̂β̂
, Vm̂ = −

1

4
(Γm̂)α̂β̂ V

α̂β̂
,

F
α̂β̂

=
1

2
F m̂n̂(Σm̂n̂)

α̂β̂
, Fm̂n̂ = (Σm̂n̂)α̂β̂ F

α̂β̂
. (A.9)

More generally, it holds

(Γm̂)
α̂β̂

(Γn̂)
γ̂δ̂
Fm̂n̂ = 2

(
εα̂γ̂Fβ̂δ̂

+ ε
β̂δ̂
Fα̂γ̂ − ε

α̂δ̂
F

β̂γ̂
− ε

β̂γ̂
F

α̂δ̂

)
. (A.10)

These results follow from the identities

ε
α̂β̂γ̂δ̂

= ε
α̂β̂
ε
γ̂δ̂

+ εα̂γ̂ εδ̂β̂
+ ε

α̂δ̂
ε
β̂γ̂
,

(Γm̂)
α̂β̂

(Γm̂)
γ̂δ̂

= ε
α̂β̂
ε
γ̂δ̂

− 2εα̂γ̂ εβ̂δ̂
+ 2ε

α̂δ̂
ε
β̂γ̂
, (A.11)

which imply

ε
α̂β̂γ̂δ̂

=
1

2
(Γm̂)

α̂β̂
(Γm̂)

γ̂δ̂
+

1

2
ε
α̂β̂
ε
γ̂δ̂
, (A.12)

with ε
α̂β̂γ̂δ̂

the completely antisymmetric fourth-rank tensor. Complex conjugation gives

(ε
α̂β̂

)∗ = −εα̂β̂ , (V
α̂β̂

)∗ = V α̂β̂ , (F
α̂β̂

)∗ = F α̂β̂ , (A.13)

provided V m̂ and F m̂n̂ are real.
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We often make use of the completely antisymmetric tensor ε
âb̂ĉd̂ê

that is normalized as

ε01235 = −ε01235 = 1 and possesses the property

εâb̂ĉd̂m̂ε
m̂â′ b̂′ĉ′d̂′

= −24δ
[â
[â′
δb̂

b̂′
δĉ
ĉ′δ

d̂]

d̂′]
= −24δ

[â
â′δ

b̂

b̂′
δĉ
ĉ′δ

d̂]

d̂′
= −24δâ

[â′δb̂

b̂′
δĉ
ĉ′δ

d̂

d̂′]
. (A.14)

It is useful to tabulate the products of several gamma-matrices (A.2). Making use

of (A.7) gives

ΓâΓb̂ = −ηâb̂1− 2Σâb̂ , (A.15a)

ΓâΓb̂Γĉ = (−ηâb̂ηĉd̂ + ηĉâηb̂d̂ − ηb̂ĉηâd̂) Γ
d̂

+ εâb̂ĉd̂ê Σ
d̂ê
, (A.15b)

ΓâΓb̂ΓĉΓd̂ = (ηâb̂ηĉd̂ − ηâĉηb̂d̂ + ηâd̂ηb̂ĉ)1− εâb̂ĉd̂ê Γê + 2ηâb̂ Σĉd̂

−2ηâĉ Σb̂d̂ + 2ηb̂ĉ Σâd̂ + 2ηd̂ĉ Σâb̂ − 2ηd̂b̂ Σâĉ + 2ηd̂âΣb̂ĉ , (A.15c)

ΓâΓb̂ΓĉΓd̂Γê = εâb̂ĉd̂ê1+ Γâ(ηb̂ĉηd̂ê − ηb̂d̂ηĉê + ηĉd̂ηb̂ê)

+Γb̂(−ηĉd̂ηêâ + ηĉêηd̂â − ηd̂êηĉâ) + Γĉ(ηd̂êηâb̂ − ηd̂âηêb̂ + ηêâηd̂b̂)

+Γd̂(−ηêâηb̂ĉ + ηêb̂ηâĉ − ηâb̂ηêĉ) + Γê(ηâb̂ηĉd̂ − ηĉâηb̂d̂ + ηb̂ĉηâd̂)

+2εâb̂ĉd̂m̂ Σm̂
ê − ηâb̂εĉd̂êm̂n̂ Σm̂n̂ + ηĉâεb̂d̂êm̂n̂ Σm̂n̂ − ηb̂ĉεâd̂êm̂n̂ Σm̂n̂

−ηd̂âεb̂ĉêm̂n̂ Σm̂n̂ + ηd̂b̂εâĉêm̂n̂ Σm̂n̂ − ηd̂ĉεâb̂êm̂n̂ Σm̂n̂ . (A.15d)

In conclusion, we give a useful relation often used in the paper. It is

ε
âb̂ĉd̂ê

(Γĉ)
α̂β̂

(Σd̂ê)
γ̂δ̂

= 2ε
α̂β̂

(Σ
âb̂

)
γ̂δ̂

+ 2εγ̂α̂(Σ
âb̂

)
β̂δ̂

+ 2ε
δ̂α̂

(Σ
âb̂

)
β̂γ̂

−2ε
γ̂β̂

(Σ
âb̂

)
α̂δ̂

− 2ε
δ̂β̂

(Σ
âb̂

)α̂γ̂ . (A.16)
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